In this work, compliant actuators are developed by coupling braided structures and polymer gels, able to produce work by controlled gel swelling in the presence of water. A number of aspects related to the engineering of gel actuators were studied, including gel selection, modelling and experimentation of constant force and constant displacement behaviour, and response time. The actuator was intended for use as vibration neutralizer: with this aim, generation of a force of 10 N in a time not exceeding a second was needed. Results were promising in terms of force generation, although response time was still longer than required. In addition, the easiest way to obtain the reversibility of the effect is still under discussion: possible routes for improvement are suggested and will be the object of future work.

Development of smart variable stiffness actuators using polymer hydrogels

SANTULLI, CARLO;
2005-01-01

Abstract

In this work, compliant actuators are developed by coupling braided structures and polymer gels, able to produce work by controlled gel swelling in the presence of water. A number of aspects related to the engineering of gel actuators were studied, including gel selection, modelling and experimentation of constant force and constant displacement behaviour, and response time. The actuator was intended for use as vibration neutralizer: with this aim, generation of a force of 10 N in a time not exceeding a second was needed. Results were promising in terms of force generation, although response time was still longer than required. In addition, the easiest way to obtain the reversibility of the effect is still under discussion: possible routes for improvement are suggested and will be the object of future work.
2005
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/310069
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact