We propose a scheme for the generation of a robust stationary squeezed state of a mechanical resonator in a quadratically coupled optomechanical system, driven by a pulsed laser. The intracavity photon number presents periodic intense peaks suddenly stiffening the effective harmonic potential felt by the mechanical resonator. These “optical spring kicks” tend to squeeze the resonator position, and due to the interplay with fluctuation-dissipation processes one can generate a stationary state with more than 10 dB of squeezing in a realistic scenario, even starting from moderately “precooled” initial thermal states.
Robust stationary mechanical squeezing in a kicked quadratic optomechanical system
ASJAD, MUHAMMAD;TOMBESI, Paolo;DI GIUSEPPE, Giovanni;VITALI, David
2014-01-01
Abstract
We propose a scheme for the generation of a robust stationary squeezed state of a mechanical resonator in a quadratically coupled optomechanical system, driven by a pulsed laser. The intracavity photon number presents periodic intense peaks suddenly stiffening the effective harmonic potential felt by the mechanical resonator. These “optical spring kicks” tend to squeeze the resonator position, and due to the interplay with fluctuation-dissipation processes one can generate a stationary state with more than 10 dB of squeezing in a realistic scenario, even starting from moderately “precooled” initial thermal states.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.