Quantum key distribution protocols typically make use of a one-way quantum channel to distribute a shared secret string to two distant users. However, protocols exploiting a two-way quantum channel have been proposed as an alternative route to the same goal, with the potential advantage of outperforming one-way protocols. Here we provide a strategy to prove security for two-way quantum key distribution protocols against the most general quantum attack possible by an eavesdropper. We utilize an entropic uncertainty relation, and only a few assumptions need to be made about the devices used in the protocol. We also show that a two-way protocol can outperform comparable one-way protocols.
Security of two-way quantum key distribution
MANCINI, Stefano;
2013-01-01
Abstract
Quantum key distribution protocols typically make use of a one-way quantum channel to distribute a shared secret string to two distant users. However, protocols exploiting a two-way quantum channel have been proposed as an alternative route to the same goal, with the potential advantage of outperforming one-way protocols. Here we provide a strategy to prove security for two-way quantum key distribution protocols against the most general quantum attack possible by an eavesdropper. We utilize an entropic uncertainty relation, and only a few assumptions need to be made about the devices used in the protocol. We also show that a two-way protocol can outperform comparable one-way protocols.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.