One of the most striking features of the strong interactions between Rydberg atoms is the Rydberg blockade effect, which allows only a single excitation to the Rydberg state within the volume of the blockade sphere. Here we present a method that spatially visualizes this phenomenon in an inhomogeneous gas of ultracold rubidium atoms. In our experiment we scan the position of one of the excitation lasers across the cold cloud and determine the number of Rydberg excitations detected as a function of position. Comparing this distribution to the one obtained for the number of ions created by a two-photon ionization process via the intermediate 5P level, we demonstrate that the blockade effect modifies the width of the Rydberg excitation profile. Furthermore, we study the dynamics of the Rydberg excitation and find that the time scale for the excitation depends on the atomic density at the beam position.
Rydberg tomography of an ultracold atomic cloud
MALOSSI, Nicola;
2013-01-01
Abstract
One of the most striking features of the strong interactions between Rydberg atoms is the Rydberg blockade effect, which allows only a single excitation to the Rydberg state within the volume of the blockade sphere. Here we present a method that spatially visualizes this phenomenon in an inhomogeneous gas of ultracold rubidium atoms. In our experiment we scan the position of one of the excitation lasers across the cold cloud and determine the number of Rydberg excitations detected as a function of position. Comparing this distribution to the one obtained for the number of ions created by a two-photon ionization process via the intermediate 5P level, we demonstrate that the blockade effect modifies the width of the Rydberg excitation profile. Furthermore, we study the dynamics of the Rydberg excitation and find that the time scale for the excitation depends on the atomic density at the beam position.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.