Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis. VEGF expression in metastatic renal cell carcinoma (mRCC) is mostly regulated by hypoxia, predominantly via the hypoxia-induced factor (HIF)/Von Hippel-Lindau (VHL) pathway. Advances in our knowledge of VEGF role in tumor angiogenesis, growth, and progression have permitted development of new approaches for the treatment of mRCC, including several agents targeting VEGF and VEGF receptors: tyrosine kinase pathway, serine/threonine kinases, 51-integrin, deacetylase, CD70, mammalian target of rapamycin (mTOR), AKT, and phosphatidylinositol 3-kinase (PI3K). Starting from sorafenib and sunitinib, several targeted therapies have been approved for mRCC treatment, with a long list of agents in course of evaluation, such as tivozanib, cediranib, and VEGF-Trap. Here we illustrate the main steps of tumor angiogenesis process, defining the pertinent therapeutic targets and the efficacy and toxicity profiles of these new promising agents.

Progress of molecular targeted therapies for advanced renal cell carcinoma

AMANTINI, Consuelo;SANTONI, Giorgio;
2013-01-01

Abstract

Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis. VEGF expression in metastatic renal cell carcinoma (mRCC) is mostly regulated by hypoxia, predominantly via the hypoxia-induced factor (HIF)/Von Hippel-Lindau (VHL) pathway. Advances in our knowledge of VEGF role in tumor angiogenesis, growth, and progression have permitted development of new approaches for the treatment of mRCC, including several agents targeting VEGF and VEGF receptors: tyrosine kinase pathway, serine/threonine kinases, 51-integrin, deacetylase, CD70, mammalian target of rapamycin (mTOR), AKT, and phosphatidylinositol 3-kinase (PI3K). Starting from sorafenib and sunitinib, several targeted therapies have been approved for mRCC treatment, with a long list of agents in course of evaluation, such as tivozanib, cediranib, and VEGF-Trap. Here we illustrate the main steps of tumor angiogenesis process, defining the pertinent therapeutic targets and the efficacy and toxicity profiles of these new promising agents.
2013
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/287000
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact