Soluplus® is a graft copolymer, with PEG and vinylcaprolactam/vinyl acetate side chains, recently available as excipient used to promote fast drug release in pharmaceutical dosage forms and as solubility enhancer. Despite this copolymer is reported to be able to act as a thickening additive and even as gelling agent as a function of temperature, there is a lack of information about the physical–chemical properties of its water dispersions. Thus, the aim of this paper is to investigate the influence of Soluplus® concentration and experimental temperature on the modification of the rheological properties of Soluplus® water dispersions. The results clearly indicated the influence of both the studied parameters and of their interactions on the Soluplus® thickening ability. Although some systems appear gel by human perception at 37 °C, the mechanical spectra demonstrated the lack of the formation of a tridimensional network structure. Overall, in all the analyzed temperatures and concentrations, the systems always behave as a “rheological” dilute or semidilute polymer solution.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Rheological characterization of polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer (Soluplus®) water dispersions | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Rivista: | ||
Abstract: | Soluplus® is a graft copolymer, with PEG and vinylcaprolactam/vinyl acetate side chains, recently available as excipient used to promote fast drug release in pharmaceutical dosage forms and as solubility enhancer. Despite this copolymer is reported to be able to act as a thickening additive and even as gelling agent as a function of temperature, there is a lack of information about the physical–chemical properties of its water dispersions. Thus, the aim of this paper is to investigate the influence of Soluplus® concentration and experimental temperature on the modification of the rheological properties of Soluplus® water dispersions. The results clearly indicated the influence of both the studied parameters and of their interactions on the Soluplus® thickening ability. Although some systems appear gel by human perception at 37 °C, the mechanical spectra demonstrated the lack of the formation of a tridimensional network structure. Overall, in all the analyzed temperatures and concentrations, the systems always behave as a “rheological” dilute or semidilute polymer solution. | |
Handle: | http://hdl.handle.net/11581/286381 | |
Appare nelle tipologie: | Articolo |