Using a simple model for nonlinear Landau-Zener tunneling between two energy bands of a Bose-Einstein condensate in a periodic potential, we find that the tunneling rates for the two directions of tunneling are not the same. Tunneling from the ground state to the excited state is enhanced by the nonlinearity, whereas in the opposite direction it is suppressed. These findings are confirmed by numerical simulations of the condensate dynamics. Measuring the tunneling rates for a condensate of rubidium atoms in an optical lattice, we have found experimental evidence for this asymmetry.

Asymmetric Landau-Zener Tunneling in a Periodic Potential

MALOSSI, Nicola;
2003

Abstract

Using a simple model for nonlinear Landau-Zener tunneling between two energy bands of a Bose-Einstein condensate in a periodic potential, we find that the tunneling rates for the two directions of tunneling are not the same. Tunneling from the ground state to the excited state is enhanced by the nonlinearity, whereas in the opposite direction it is suppressed. These findings are confirmed by numerical simulations of the condensate dynamics. Measuring the tunneling rates for a condensate of rubidium atoms in an optical lattice, we have found experimental evidence for this asymmetry.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11581/284841
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 147
  • ???jsp.display-item.citation.isi??? 152
social impact