Given a reducibility $\leq_\mathrm{r}$, we say that an infinite set $A$ is $r$-introimmune if $A$ is not $r$-reducible to any of its subsets $B$ with $|A\backslash B|=\infty$. We consider the many-one reducibility $\leq_\mathrm{m}$ and we prove the existence of a low$_1$ $m$-introimmune set in $\Pi^0_1$ and the existence of a low$_1$ bi-$m$-introimmune set.

Low sets without subsets of higher many-one degree

CINTIOLI, Patrizio
2011-01-01

Abstract

Given a reducibility $\leq_\mathrm{r}$, we say that an infinite set $A$ is $r$-introimmune if $A$ is not $r$-reducible to any of its subsets $B$ with $|A\backslash B|=\infty$. We consider the many-one reducibility $\leq_\mathrm{m}$ and we prove the existence of a low$_1$ $m$-introimmune set in $\Pi^0_1$ and the existence of a low$_1$ bi-$m$-introimmune set.
2011
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/265181
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact