Two new tryptophan derivatives, N-sulfonyl-L-tryptophan (tryptorheedei A) (1) and 3-(Nsulfonylindolyl)- D-lactic acid (tryptorheedei B) (2) together with the known 5-O-β-Dglucopyranosyl- 2-hydroxyphenylacetic acid (3), 1-O-methylglucopyranoside, entadamide A, homogentisic acid and 3-O-β-D-glucopyranosyl-β-sitosterol, were isolated from the seed kernels of Entada rheedei (Mimosaceae). Their structures were established using 1D and 2D NMR spectroscopy, mass spectrometry and by comparison with spectroscopic data reported in the literature. Compounds 1 and 2 showed no toxicity to TZM and Human PBMC cells. Both compounds 1 and 2 were found to promote early infection events in HIV, likely by inhibiting the enzyme indolamine 2,3-dioxygenase (IDO) and preventing tryptophan depletion. Inhibition of IDO acutely in HIV infection inhibits viral replication, but chronic activation of IDO leads to immune impairment in AIDS. IDO is also the gatekeeper enzyme for kynurenine metabolism, a pathway involved in serotonin and melatonin biosynthesis and the regulation of glutamate and dopamine levels in the brain. Therefore inhibition of IDO might explain both the reported medicinal and neuropsychiatric effects of E. rheedei

Two new tryptophan derivatives from the seed kernels of Entada rheedei: Effects on cell viability and HIV infectivity

BARBONI, Luciano
2013-01-01

Abstract

Two new tryptophan derivatives, N-sulfonyl-L-tryptophan (tryptorheedei A) (1) and 3-(Nsulfonylindolyl)- D-lactic acid (tryptorheedei B) (2) together with the known 5-O-β-Dglucopyranosyl- 2-hydroxyphenylacetic acid (3), 1-O-methylglucopyranoside, entadamide A, homogentisic acid and 3-O-β-D-glucopyranosyl-β-sitosterol, were isolated from the seed kernels of Entada rheedei (Mimosaceae). Their structures were established using 1D and 2D NMR spectroscopy, mass spectrometry and by comparison with spectroscopic data reported in the literature. Compounds 1 and 2 showed no toxicity to TZM and Human PBMC cells. Both compounds 1 and 2 were found to promote early infection events in HIV, likely by inhibiting the enzyme indolamine 2,3-dioxygenase (IDO) and preventing tryptophan depletion. Inhibition of IDO acutely in HIV infection inhibits viral replication, but chronic activation of IDO leads to immune impairment in AIDS. IDO is also the gatekeeper enzyme for kynurenine metabolism, a pathway involved in serotonin and melatonin biosynthesis and the regulation of glutamate and dopamine levels in the brain. Therefore inhibition of IDO might explain both the reported medicinal and neuropsychiatric effects of E. rheedei
2013
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/263382
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact