Genes encoding the enzyme methionine sulfoxide reductase type B, specific to the reduction of the oxidized methionine-R form, were characterized from the expressed (macronuclear) genome of two ecologically separate marine species of Euplotes, i.e. temperate water E. raikovi and polar water E. nobilii. Both species were found to contain a single msrB gene with a very simple structural organization encoding a protein of 127 (E. raikovi) or 126 (E. nobilii) amino acid residues that belongs to the group of zinc-containing enzymes. Both msrB genes are constitutively expressed, suggesting that the MsrB enzyme plays an essential role in repairing oxidative damages that appear to be primarily caused by physiological cell aging in E. raikovi and by interactions with an O2 saturated environment in E. nobilii.
Methionine sulfoxide reduction in ciliates: Characterization of the ready-to-use methionine sulfoxide-R-reductase genes in Euplotes
ALIMENTI, Claudio;LUPORINI, Pierangelo;VALLESI, Adriana
2013-01-01
Abstract
Genes encoding the enzyme methionine sulfoxide reductase type B, specific to the reduction of the oxidized methionine-R form, were characterized from the expressed (macronuclear) genome of two ecologically separate marine species of Euplotes, i.e. temperate water E. raikovi and polar water E. nobilii. Both species were found to contain a single msrB gene with a very simple structural organization encoding a protein of 127 (E. raikovi) or 126 (E. nobilii) amino acid residues that belongs to the group of zinc-containing enzymes. Both msrB genes are constitutively expressed, suggesting that the MsrB enzyme plays an essential role in repairing oxidative damages that appear to be primarily caused by physiological cell aging in E. raikovi and by interactions with an O2 saturated environment in E. nobilii.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.