In protozoan ciliates, diffusible signalling proteins (pheromones) regulate the vegetative growth and mating interactions. Here, the coding genes and the structures of the encoded pheromones were studied in genetically distinct wild-type strains representing interbreeding Antarctic and Arctic populations of the marine ciliate Euplotes nobilii. Determination of seven allelic pheromone-coding DNA sequences revealed that an unusual extension and high structural conservation of the 5′ non-coding region are peculiar traits of this gene family, implying that this region is directly involved in the mechanism of pheromone gene expression, possibly through phenomena of intron splicing and/or frame-shifting. For four pheromones, the three-dimensional structures were determined by nuclear magnetic resonance spectroscopy in solution. These structures show that the pheromones represent a protein family which adapts to its polar environment by combining a structurally stable core of a three-helix bundle with extended polypeptide segments that are devoid of regular secondary structures and concomitantly show enhanced structural flexibility.

Coding genes and molecular structures of the diffusible signalling proteins (pheromones) of the polar ciliate, Euplotes nobilii

VALLESI, Adriana;ALIMENTI, Claudio;LUPORINI, Pierangelo
2012-01-01

Abstract

In protozoan ciliates, diffusible signalling proteins (pheromones) regulate the vegetative growth and mating interactions. Here, the coding genes and the structures of the encoded pheromones were studied in genetically distinct wild-type strains representing interbreeding Antarctic and Arctic populations of the marine ciliate Euplotes nobilii. Determination of seven allelic pheromone-coding DNA sequences revealed that an unusual extension and high structural conservation of the 5′ non-coding region are peculiar traits of this gene family, implying that this region is directly involved in the mechanism of pheromone gene expression, possibly through phenomena of intron splicing and/or frame-shifting. For four pheromones, the three-dimensional structures were determined by nuclear magnetic resonance spectroscopy in solution. These structures show that the pheromones represent a protein family which adapts to its polar environment by combining a structurally stable core of a three-helix bundle with extended polypeptide segments that are devoid of regular secondary structures and concomitantly show enhanced structural flexibility.
2012
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/251981
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact