Acetazolamide shows a very poor compression ability and tablets must usually be produced through a wet granulation process. However, the possibility to obtain pure acetazolamide for direct compression could be interesting for industrial application. With the scope to obtain a material for direct compression, three different crystallisation methods were chosen, with respect to acetazolamide solvent solubility. (a) Acetazolamide was dissolved in an ammonia solution and then spray dried. It was possible to characterise the spherical particles as a mixture of two polymorphic forms, I and II by Powder X-ray diffraction study. (b) Pure form I was obtained by slowly cooling to room temperature a boiling water solution. (c) Pure form II, the marketed form, was obtained by neutralisation of an ammonia solution. Their compression behaviour was investigated firstly by a rotary press. Whilst pure polymorphic forms I and II could not be compressed, the spray dried particles showed very good compression properties. In fact, tablets were obtained only by spray dried particles, which show very good properties under compression and the absence of capping tendency. On the other hand, it was impossible to obtain tablets from polymorphic forms I and II, whatever compression pressures were used. In order to explain their densification mechanism, a single-punch tablet machine, equipped for the measurement of the upper punch displacement in the die, was used. From calculated Heckel’s parameters, it was demonstrated that the spray dried material shows a greater particle rearrangement in the initial stage of compression due to its spherical habit and minor wrinkledness of particle surface. The crystalline structure due to the presence of polymorphic forms I and II concur to lowering the intrinsic elasticity of the material. This fact avoids the risk of the rupturing the interpaticulate bonds, which are formed during the compression, concurring to the consolidation of the tablet.

The spray drying of acetazolamide as a method to modify crystal properties and to improve compression behaviour

DI MARTINO, Piera;PALMIERI, Giovanni Filippo;
2001-01-01

Abstract

Acetazolamide shows a very poor compression ability and tablets must usually be produced through a wet granulation process. However, the possibility to obtain pure acetazolamide for direct compression could be interesting for industrial application. With the scope to obtain a material for direct compression, three different crystallisation methods were chosen, with respect to acetazolamide solvent solubility. (a) Acetazolamide was dissolved in an ammonia solution and then spray dried. It was possible to characterise the spherical particles as a mixture of two polymorphic forms, I and II by Powder X-ray diffraction study. (b) Pure form I was obtained by slowly cooling to room temperature a boiling water solution. (c) Pure form II, the marketed form, was obtained by neutralisation of an ammonia solution. Their compression behaviour was investigated firstly by a rotary press. Whilst pure polymorphic forms I and II could not be compressed, the spray dried particles showed very good compression properties. In fact, tablets were obtained only by spray dried particles, which show very good properties under compression and the absence of capping tendency. On the other hand, it was impossible to obtain tablets from polymorphic forms I and II, whatever compression pressures were used. In order to explain their densification mechanism, a single-punch tablet machine, equipped for the measurement of the upper punch displacement in the die, was used. From calculated Heckel’s parameters, it was demonstrated that the spray dried material shows a greater particle rearrangement in the initial stage of compression due to its spherical habit and minor wrinkledness of particle surface. The crystalline structure due to the presence of polymorphic forms I and II concur to lowering the intrinsic elasticity of the material. This fact avoids the risk of the rupturing the interpaticulate bonds, which are formed during the compression, concurring to the consolidation of the tablet.
2001
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/250545
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 43
social impact