Recent behavioral, pharmacological and molecular findings have linked the NPS system to drug dependence. Most of the evidence supports the possibility that increased NPS activity may contribute to shaping vulnerability to addiction, especially relapse. However, data suggesting that the anxiolytic-like properties of NPS may have protective effects on addiction have been also published. In addition, evidence from conditioned place preference experiments, though not unequivocal, suggests that NPS per se is devoid of motivational properties. Intriguingly, several effects of NPS on drugs of abuse appear to be mediated by downstream activation of brain corticotrophin releasing factor (CRF) and hypocretin-1/orexin-A (Hcrt-1/Ox-A) systems. The major objective of the present article is to review the existing work on NPS and addiction. Particular attention is devoted to the interpretation of findings revealing complex neuroanatomical and functional interactions between NPS, CRF, and the Hcrt-1/Ox-A systems. Original data aimed at shedding light on the role of NPS in reward processing are also shown. Finally, existing findings are discussed within the framework of addiction theories, and the potential of the NPS system as a treatment target for addiction is analyzed.
The role of the neuropeptide S system in addiction: Focus on its interaction with the CRF and hypocretin/orexin neurotransmission
CANNELLA, NAZZARENO;KALLUPI, MARSIDA;RUGGERI, Barbara;CICCOCIOPPO, Roberto;UBALDI, Massimo
2012-01-01
Abstract
Recent behavioral, pharmacological and molecular findings have linked the NPS system to drug dependence. Most of the evidence supports the possibility that increased NPS activity may contribute to shaping vulnerability to addiction, especially relapse. However, data suggesting that the anxiolytic-like properties of NPS may have protective effects on addiction have been also published. In addition, evidence from conditioned place preference experiments, though not unequivocal, suggests that NPS per se is devoid of motivational properties. Intriguingly, several effects of NPS on drugs of abuse appear to be mediated by downstream activation of brain corticotrophin releasing factor (CRF) and hypocretin-1/orexin-A (Hcrt-1/Ox-A) systems. The major objective of the present article is to review the existing work on NPS and addiction. Particular attention is devoted to the interpretation of findings revealing complex neuroanatomical and functional interactions between NPS, CRF, and the Hcrt-1/Ox-A systems. Original data aimed at shedding light on the role of NPS in reward processing are also shown. Finally, existing findings are discussed within the framework of addiction theories, and the potential of the NPS system as a treatment target for addiction is analyzed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.