We describe a reversible quantum interface between an optical and a microwave field using a hybrid device based on their common interaction with a micromechanical resonator in a superconducting circuit. We show that, by employing state-of-the-art optoelectromechanical devices, one can realize an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal, which can be used for high-fidelity transfer of quantum states between optical and microwave fields by means of continuous variable teleportation.
Reversible Optical-to-Microwave Quantum Interface
TOMBESI, Paolo;VITALI, David
2012-01-01
Abstract
We describe a reversible quantum interface between an optical and a microwave field using a hybrid device based on their common interaction with a micromechanical resonator in a superconducting circuit. We show that, by employing state-of-the-art optoelectromechanical devices, one can realize an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal, which can be used for high-fidelity transfer of quantum states between optical and microwave fields by means of continuous variable teleportation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.