We describe a reversible quantum interface between an optical and a microwave field using a hybrid device based on their common interaction with a micromechanical resonator in a superconducting circuit. We show that, by employing state-of-the-art optoelectromechanical devices, one can realize an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal, which can be used for high-fidelity transfer of quantum states between optical and microwave fields by means of continuous variable teleportation.

Reversible Optical-to-Microwave Quantum Interface

TOMBESI, Paolo;VITALI, David
2012-01-01

Abstract

We describe a reversible quantum interface between an optical and a microwave field using a hybrid device based on their common interaction with a micromechanical resonator in a superconducting circuit. We show that, by employing state-of-the-art optoelectromechanical devices, one can realize an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal, which can be used for high-fidelity transfer of quantum states between optical and microwave fields by means of continuous variable teleportation.
2012
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/247335
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 236
  • ???jsp.display-item.citation.isi??? 233
social impact