Dopexamine hydrochloride is a synthetic catecholamine proposed for the short-term treatment of heart failure and postoperative low cardiac output. The pharmacological profile and anatomical localization of dopexamine binding were investigated in sections of right and left ventricle using [3H]-dopexamine and ligand techniques associated with light microscope autoradiography. Its effects on the 3-5-cyclic adenosine monophosphate (cAMP) generating system in membrane particles of the human right or left ventricle were also studied. [3H]-Dopexamine was specifically bound to sections of human right or left ventricle. The binding was time-, temperature- and concentration-dependent and was dissociable. The apparent equilibrium constant of dissociation was 3.5 nM. A decreased [3H]-dopexamine binding capacity from the base to the apex and ventricles was noticeable. The pharmacological profile of [3H]-dopexamine binding to sections of right or left ventricle was consistent with the labelling of both beta 2-adrenoceptors and dopamine DA-2 receptors. The most potent displacer of [3H]-dopexamine was the beta 2-adrenoceptor antagonist ICI 118,551 followed by dopamine, noradrenaline and domperidone. The beta 1-adrenoceptor antagonist metoprolol or the dopamine DA-1 receptor antagonist SCH 23390 were ineffective as displacers of [3H]-dopexamine binding. Light microscope autoradiography revealed the localization of [3H]-dopexamine binding sites within the wall of the human right and left ventricle. The density of silver grains was slightly higher in the right than in the left ventricle and showed a uniform transmural distribution across the ventricular wall.(ABSTRACT TRUNCATED AT 250 WORDS)
Dopexamine hydrochloride in the human heart: receptor binding and effects on cAMP generation.
AMENTA, Francesco
1992-01-01
Abstract
Dopexamine hydrochloride is a synthetic catecholamine proposed for the short-term treatment of heart failure and postoperative low cardiac output. The pharmacological profile and anatomical localization of dopexamine binding were investigated in sections of right and left ventricle using [3H]-dopexamine and ligand techniques associated with light microscope autoradiography. Its effects on the 3-5-cyclic adenosine monophosphate (cAMP) generating system in membrane particles of the human right or left ventricle were also studied. [3H]-Dopexamine was specifically bound to sections of human right or left ventricle. The binding was time-, temperature- and concentration-dependent and was dissociable. The apparent equilibrium constant of dissociation was 3.5 nM. A decreased [3H]-dopexamine binding capacity from the base to the apex and ventricles was noticeable. The pharmacological profile of [3H]-dopexamine binding to sections of right or left ventricle was consistent with the labelling of both beta 2-adrenoceptors and dopamine DA-2 receptors. The most potent displacer of [3H]-dopexamine was the beta 2-adrenoceptor antagonist ICI 118,551 followed by dopamine, noradrenaline and domperidone. The beta 1-adrenoceptor antagonist metoprolol or the dopamine DA-1 receptor antagonist SCH 23390 were ineffective as displacers of [3H]-dopexamine binding. Light microscope autoradiography revealed the localization of [3H]-dopexamine binding sites within the wall of the human right and left ventricle. The density of silver grains was slightly higher in the right than in the left ventricle and showed a uniform transmural distribution across the ventricular wall.(ABSTRACT TRUNCATED AT 250 WORDS)I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.