Baroclinic instability in the presence of steep finite amplitude topography is studied in the primitive equation model. The quasi-geostrophic theory of Alpine cyclogenesis of Speranza et al. is reanalyzed and discussed in this context. The present model is a generalization of the one used by Stone to include topographic effects, lateral shear of the basic wind, and/or lateral walls. We focus in particular on the differences between this formulation and the quasi-geostrophic one when the meridional scale of the topography is very small (of the order of 100 km). We find that only in the primitive equation model does a small-volume mountain, of height and width comparable with those of the Alps, introduce significant large-scale modifications to the baroclinic modes. The most unstable mode attains its maximum amplitude to the southern side of the mountain. We show that these results do not depend upon the specification of the lateral boundary conditions provided the basic state baroclinicity is meridionally confined.

Effects of finite height topography on non-geostrophic baroclinic instability : implications to theories of lee cyclogenesis

SPERANZA, Antonio
1987-01-01

Abstract

Baroclinic instability in the presence of steep finite amplitude topography is studied in the primitive equation model. The quasi-geostrophic theory of Alpine cyclogenesis of Speranza et al. is reanalyzed and discussed in this context. The present model is a generalization of the one used by Stone to include topographic effects, lateral shear of the basic wind, and/or lateral walls. We focus in particular on the differences between this formulation and the quasi-geostrophic one when the meridional scale of the topography is very small (of the order of 100 km). We find that only in the primitive equation model does a small-volume mountain, of height and width comparable with those of the Alps, introduce significant large-scale modifications to the baroclinic modes. The most unstable mode attains its maximum amplitude to the southern side of the mountain. We show that these results do not depend upon the specification of the lateral boundary conditions provided the basic state baroclinicity is meridionally confined.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/242760
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact