This paper presents an analytical model for the short- and long-term analysis of composite steel-concrete beams with partial shear interaction and accounting for shear-lag effects. The material properties of the concrete have been assumed to be time-dependent and have been modelled by means of the algebraic methods while the remaining materials forming the cross-section have been supposed to behave in a linear-elastic manner. The global balance condition of the problem has been obtained by means of the principle of virtual work and, integrating this by parts, the governing system of differential equations and corresponding boundary conditions have been determined. Analytical expressions for both short- and long-term solutions have been derived and, to outline their ease of use, a number of case studies relevant for bridge applications have been proposed.
Short- and Long-term Analytical Solutions for Composite Beams with Partial Interaction and Shear-lag Effects
LEONI, Graziano
2010-01-01
Abstract
This paper presents an analytical model for the short- and long-term analysis of composite steel-concrete beams with partial shear interaction and accounting for shear-lag effects. The material properties of the concrete have been assumed to be time-dependent and have been modelled by means of the algebraic methods while the remaining materials forming the cross-section have been supposed to behave in a linear-elastic manner. The global balance condition of the problem has been obtained by means of the principle of virtual work and, integrating this by parts, the governing system of differential equations and corresponding boundary conditions have been determined. Analytical expressions for both short- and long-term solutions have been derived and, to outline their ease of use, a number of case studies relevant for bridge applications have been proposed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.