The present study investigated the effect of selective muscarinic antagonists on natriuresis, kaliuresis and antidiuresis induced by intracerebroventricular (i.c.v.) injection of carbachol in the rat. The muscarinic antagonists were given by i.c.v. injection 1 min before carbachol (1 microgram/rat). 4-Diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP), a rather selective M1 and M3 receptor antagonist, was the most potent inhibitor of carbachol-induced natriuresis, kaliuresis and antidiuresis, its ID50 being respectively 0.12, 0.04 and 0.56 nmol/rat. Pirenzepine, a selective M1 antagonist, potently inhibited the above mentioned carbachol effects, its ID50 being 1.85, 3.25 and 1.49 nmol/rat, respectively. On the other hand, the M2-selective antagonist methoctramine and the M3-selective antagonist p-fluoro-hexahydro-sila-difenidol were very weak inhibitors. Methoctramine at doses up to 60 nmol/rat produced non statistically significant inhibition of carbachol-induced natriuresis, kaliuresis and antidiuresis. Para-fluoro-hexahydro-sila-diphenidol showed an ID50 of 64.4 nmol/rat on carbachol-induced natriuresis, while at the maximum dose employed, 100 nmol/rat, the inhibition of carbachol-induced kaliuresis and antidiuresis was lower than 50%. The rank order of potency of the antagonists tested proved to be related to their pA2 values for muscarinic M1 receptors, suggesting that this receptor subtype mediates the central effects of cholinergic mechanisms on water and electrolyte excretion.
Natriuresis, kaliuresis and antidiuresis induced by central carbachol injection are mediated by muscarinic M1 receptors.
POLIDORI, Carlo;POMPEI, Pierluigi;PERFUMI, Marina Cecilia;MASSI, Maurizio
1991-01-01
Abstract
The present study investigated the effect of selective muscarinic antagonists on natriuresis, kaliuresis and antidiuresis induced by intracerebroventricular (i.c.v.) injection of carbachol in the rat. The muscarinic antagonists were given by i.c.v. injection 1 min before carbachol (1 microgram/rat). 4-Diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP), a rather selective M1 and M3 receptor antagonist, was the most potent inhibitor of carbachol-induced natriuresis, kaliuresis and antidiuresis, its ID50 being respectively 0.12, 0.04 and 0.56 nmol/rat. Pirenzepine, a selective M1 antagonist, potently inhibited the above mentioned carbachol effects, its ID50 being 1.85, 3.25 and 1.49 nmol/rat, respectively. On the other hand, the M2-selective antagonist methoctramine and the M3-selective antagonist p-fluoro-hexahydro-sila-difenidol were very weak inhibitors. Methoctramine at doses up to 60 nmol/rat produced non statistically significant inhibition of carbachol-induced natriuresis, kaliuresis and antidiuresis. Para-fluoro-hexahydro-sila-diphenidol showed an ID50 of 64.4 nmol/rat on carbachol-induced natriuresis, while at the maximum dose employed, 100 nmol/rat, the inhibition of carbachol-induced kaliuresis and antidiuresis was lower than 50%. The rank order of potency of the antagonists tested proved to be related to their pA2 values for muscarinic M1 receptors, suggesting that this receptor subtype mediates the central effects of cholinergic mechanisms on water and electrolyte excretion.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.