In the Mejillones Formation, a shallow-marine Pleistocene succession of northern Chile, the cyclic stratigraphic record is the result of the complex interaction of regional uplift, glacio-eustasy, local tectonics, and sediment supply. Stratal geometries, characteristics of sedimentary facies, and nature of sequence-bounding unconformities have been investigated to evaluate the influence of: (i) intrabasinal, short-term normal faulting on both along-strike variations in sequence architecture and genetic complexity of key stratal surfaces; and (ii) long-term regional uplift on sequence stacking pattern. The stratigraphic succession, dissected by small-displacement (few meters) normal faults striking obliquely with respect to the palaeo-shoreline trends, displays systematic variations in sequence architecture and the nature of bounding surfaces across them. Indeed, depending on position with respect to the fault plane, two basic types of internal organisation can be recognised in the examined shallow-marine sequence. Within grabens it consists of a siliciclastic-rich transgressive systems tract (TST), which is bounded beneath by a transgressively modified, Glossifungites-demarcated sequence boundary (SB/RS), overlain by a mollusc-bearing falling-stage systems tract (FSST). The erosional downlap surface that separates the TST from the FSST is the regressive surface of marine erosion (RSME). On the footwall crests the combination of marine regressive erosion, during falls in relative sea-level, and uplift has resulted in complete removal of the sediments of the TST from these sites, leading to the formation of a tectonically enhanced basal unconformity composed of the RSME superimposed onto the previous SB/RS (SB/RS/RSME). The prominent lateral change in component units (systems tracts) and nature of bounding surfaces within the studied sequence is directly related to the presence of normal faults and indicates that fault activity had a major impact on the sequence stratigraphic evolution of the Mejillones Formation, enhancing subsidence within the grabens and promoting unconformities in the horsts. Overall, the Mejillones Formation records a long-term sea-level fall driven by the contemporaneous regional uplift, punctuated by repeated, high-frequency eustatic sea-level changes. The effect of this superimposition was that glacio-eustatic sequences were displaced progressively downward and basinward and stacked in a distinct downstepping, tectonically enhanced falling-stage sequence set, which reflects basin-wide loss in accommodation space. The sequence set is underlain by a composite RSME that becomes progressively younger basinward and is made up by the lateral and down-dip connection of a series of lower-rank sequence boundaries including hanging-wall SB/RSs and footwall SB/RS/RSMEs of successive sequences.

Short- and long-term tectonic control on internal architecture and stacking pattern of Pleistocene depositional sequences (Mejillones Formation, northern Chile)

DI CELMA, Claudio Nicola;CANTALAMESSA, Gino;
2007-01-01

Abstract

In the Mejillones Formation, a shallow-marine Pleistocene succession of northern Chile, the cyclic stratigraphic record is the result of the complex interaction of regional uplift, glacio-eustasy, local tectonics, and sediment supply. Stratal geometries, characteristics of sedimentary facies, and nature of sequence-bounding unconformities have been investigated to evaluate the influence of: (i) intrabasinal, short-term normal faulting on both along-strike variations in sequence architecture and genetic complexity of key stratal surfaces; and (ii) long-term regional uplift on sequence stacking pattern. The stratigraphic succession, dissected by small-displacement (few meters) normal faults striking obliquely with respect to the palaeo-shoreline trends, displays systematic variations in sequence architecture and the nature of bounding surfaces across them. Indeed, depending on position with respect to the fault plane, two basic types of internal organisation can be recognised in the examined shallow-marine sequence. Within grabens it consists of a siliciclastic-rich transgressive systems tract (TST), which is bounded beneath by a transgressively modified, Glossifungites-demarcated sequence boundary (SB/RS), overlain by a mollusc-bearing falling-stage systems tract (FSST). The erosional downlap surface that separates the TST from the FSST is the regressive surface of marine erosion (RSME). On the footwall crests the combination of marine regressive erosion, during falls in relative sea-level, and uplift has resulted in complete removal of the sediments of the TST from these sites, leading to the formation of a tectonically enhanced basal unconformity composed of the RSME superimposed onto the previous SB/RS (SB/RS/RSME). The prominent lateral change in component units (systems tracts) and nature of bounding surfaces within the studied sequence is directly related to the presence of normal faults and indicates that fault activity had a major impact on the sequence stratigraphic evolution of the Mejillones Formation, enhancing subsidence within the grabens and promoting unconformities in the horsts. Overall, the Mejillones Formation records a long-term sea-level fall driven by the contemporaneous regional uplift, punctuated by repeated, high-frequency eustatic sea-level changes. The effect of this superimposition was that glacio-eustatic sequences were displaced progressively downward and basinward and stacked in a distinct downstepping, tectonically enhanced falling-stage sequence set, which reflects basin-wide loss in accommodation space. The sequence set is underlain by a composite RSME that becomes progressively younger basinward and is made up by the lateral and down-dip connection of a series of lower-rank sequence boundaries including hanging-wall SB/RSs and footwall SB/RS/RSMEs of successive sequences.
2007
275
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/240188
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact