The pressure behavior of an amorphous Si-rich SiGe alloy (alpha-Si(x)Ge(1-x), x = 0.75) has been investigated up to about 30 GPa, by a combination of Raman spectroscopy, x-ray absorption spectroscopy, and x-ray diffraction measurements. The trends of microscopic structural properties and of the Raman-active phonon modes are presented in the whole pressure range. Nucleation of nanocrystalline alloy particles and metallization have been observed above 12 GPa, with a range of about 2 GPa of coexistence of amorphous and crystalline phases. Transformations from the amorphous tetrahedral, to the crystalline tetragonal (beta-Sn) and to the simple hexagonal structures have been observed around 13.8 and 21.8 GPa. The recovered sample upon depressurization, below about 4 GPa, shows a local structure similar to the as-deposited one. Inhomogeneities of the amorphous texture at the nanometric scale, probed by high-resolution transmission electron microscopy, indicate that the recovered amorphous sample has a different ordering at this scale, and therefore the transformations can not be considered fully reversible. The role of disordered grain boundaries at high pressure and the possible presence of a high-density amorphous phase are discussed.
Pressure-induced transformations in amorphous Si-Ge alloy
A. Trapananti;DI CICCO, Andrea
2012-01-01
Abstract
The pressure behavior of an amorphous Si-rich SiGe alloy (alpha-Si(x)Ge(1-x), x = 0.75) has been investigated up to about 30 GPa, by a combination of Raman spectroscopy, x-ray absorption spectroscopy, and x-ray diffraction measurements. The trends of microscopic structural properties and of the Raman-active phonon modes are presented in the whole pressure range. Nucleation of nanocrystalline alloy particles and metallization have been observed above 12 GPa, with a range of about 2 GPa of coexistence of amorphous and crystalline phases. Transformations from the amorphous tetrahedral, to the crystalline tetragonal (beta-Sn) and to the simple hexagonal structures have been observed around 13.8 and 21.8 GPa. The recovered sample upon depressurization, below about 4 GPa, shows a local structure similar to the as-deposited one. Inhomogeneities of the amorphous texture at the nanometric scale, probed by high-resolution transmission electron microscopy, indicate that the recovered amorphous sample has a different ordering at this scale, and therefore the transformations can not be considered fully reversible. The role of disordered grain boundaries at high pressure and the possible presence of a high-density amorphous phase are discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.