Formulation of poorly water-soluble crystalline drugs into their more soluble amorphous form is a common approach for improving their bioavailability. In this study, the amorphous forms of nicergoline (NIC) and cabergoline (CAB) were obtained by different methods (melting and precipitation under solvent evaporation). The physicochemical characteristics of the samples were determined by HPLC, differential scanning calorimetry (DSC), thermogravimetry, and X-ray powder diffractometry. The physical stability of the amorphous forms was investigated by DSC by considering how the onset temperature and the enthalpy content at the glass transition vary with aging time and temperature. Using the Kohlrausch–Williams–Watts equation on the data obtained from the experiments, the ‘‘mean molecular relaxation time constant’’ (s) was estimated. This parameter was used to understand the stability of NIC and CAB in their glassy state at different temperatures, and results showed that their stability is adequate to enable the formulation of these drugs into solid dosage forms.

Physicochemical characterization of nicergoline and cabergoline in its amorphous state.

CENSI, Roberta;DI MARTINO, Piera
2012-01-01

Abstract

Formulation of poorly water-soluble crystalline drugs into their more soluble amorphous form is a common approach for improving their bioavailability. In this study, the amorphous forms of nicergoline (NIC) and cabergoline (CAB) were obtained by different methods (melting and precipitation under solvent evaporation). The physicochemical characteristics of the samples were determined by HPLC, differential scanning calorimetry (DSC), thermogravimetry, and X-ray powder diffractometry. The physical stability of the amorphous forms was investigated by DSC by considering how the onset temperature and the enthalpy content at the glass transition vary with aging time and temperature. Using the Kohlrausch–Williams–Watts equation on the data obtained from the experiments, the ‘‘mean molecular relaxation time constant’’ (s) was estimated. This parameter was used to understand the stability of NIC and CAB in their glassy state at different temperatures, and results showed that their stability is adequate to enable the formulation of these drugs into solid dosage forms.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/233267
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact