In this work, using information geometric (IG) techniques, we investigate the effects of micro-correlations on the evolution of maximal probability paths on statistical manifolds induced by systems whose microscopic degrees of freedom are Gaussian distributed. Analytical estimates of the information geometric entropy (IGE) as well as the IG analogue of the Lyapunov exponents are presented. It is shown that the entanglement duration is related to the scattering potential and incident particle energies. Finally, the degree of entanglement generated by an s-wave scattering event between minimum uncertainty wave-packets is computed in terms of the purity of the system.
An Information Geometric Analysis of Entangled Continuous Variable Quantum Systems
MANCINI, Stefano
2011-01-01
Abstract
In this work, using information geometric (IG) techniques, we investigate the effects of micro-correlations on the evolution of maximal probability paths on statistical manifolds induced by systems whose microscopic degrees of freedom are Gaussian distributed. Analytical estimates of the information geometric entropy (IGE) as well as the IG analogue of the Lyapunov exponents are presented. It is shown that the entanglement duration is related to the scattering potential and incident particle energies. Finally, the degree of entanglement generated by an s-wave scattering event between minimum uncertainty wave-packets is computed in terms of the purity of the system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.