The subdiffusion of a stochastic single file is interpreted as a jumping process. Contrary to the current continuous time random walk models, its statistics is characterized by finite averages of the jumping times and square displacements. Subdiffusion is then related to a persistent anticorrelation of the jump sequences. In continuous time representation, this corresponds to negative power-law velocity autocorrelations, attributable to the restricted geometry of the file diffusion.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Subdiffusion and long-time anticorrelations in a stochastic single file |
Autori: | |
Data di pubblicazione: | 2006 |
Rivista: | |
Abstract: | The subdiffusion of a stochastic single file is interpreted as a jumping process. Contrary to the current continuous time random walk models, its statistics is characterized by finite averages of the jumping times and square displacements. Subdiffusion is then related to a persistent anticorrelation of the jump sequences. In continuous time representation, this corresponds to negative power-law velocity autocorrelations, attributable to the restricted geometry of the file diffusion. |
Handle: | http://hdl.handle.net/11581/224087 |
Appare nelle tipologie: | Articolo |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.