This paper presents a discrete-time variable-structure-based control and a speed estimator designed for a permanent-magnet synchronous motor (PMSM). A cascade control scheme is proposed which provides accurate speed tracking performance. In this control scheme the speed estimator is a robust digital differentiator that provides the first derivative of the encoder position measurement. The analysis of the control stability is given and the ultimate boundedness of the speed tracking error is proved. The control scheme is experimentally tested on a commercial PMSM drive. Reported experimental evidence shows that the proposed solution produces good speed trajectory tracking performance and it is robust in the presence of disturbances affecting the system
A quasi-sliding mode approach for robust control and speed estimation of PM synchronous motors
CORRADINI, Maria Letizia;
2012-01-01
Abstract
This paper presents a discrete-time variable-structure-based control and a speed estimator designed for a permanent-magnet synchronous motor (PMSM). A cascade control scheme is proposed which provides accurate speed tracking performance. In this control scheme the speed estimator is a robust digital differentiator that provides the first derivative of the encoder position measurement. The analysis of the control stability is given and the ultimate boundedness of the speed tracking error is proved. The control scheme is experimentally tested on a commercial PMSM drive. Reported experimental evidence shows that the proposed solution produces good speed trajectory tracking performance and it is robust in the presence of disturbances affecting the systemI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.