This paper proposes an actuator fault-tolerant control scheme, composed of the usual modules performing detection, isolation, accommodation, designed for a class of nonlinear systems, and then applied to an underwater remotely operated vehicle (ROV) used for inspection purposes. Detection is in charge of a residual generation module, while a sliding-mode-based approach has been used both for ROV control and fault isolation, after the application of an input decoupling nonlinear state transformation to the ROV model. Finally, control reconfiguration is performed exploiting the inherent redundancy of actuators. An extensive simulation study has been also performed, supporting the effectiveness of the proposed approach.

An Actuator Failure Tolerant Control Scheme for an Underwater Remotely Operated Vehicle

CORRADINI, Maria Letizia;
2011-01-01

Abstract

This paper proposes an actuator fault-tolerant control scheme, composed of the usual modules performing detection, isolation, accommodation, designed for a class of nonlinear systems, and then applied to an underwater remotely operated vehicle (ROV) used for inspection purposes. Detection is in charge of a residual generation module, while a sliding-mode-based approach has been used both for ROV control and fault isolation, after the application of an input decoupling nonlinear state transformation to the ROV model. Finally, control reconfiguration is performed exploiting the inherent redundancy of actuators. An extensive simulation study has been also performed, supporting the effectiveness of the proposed approach.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/202724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 75
social impact