Cold induction of cspA, the paradigm Escherichia coli cold-shock gene, is mainly subject to posttranscriptional control, partly promoted by cis-acting elements of its transcript, whose secondary structure at 37°C and at cold-shock temperature has been elucidated here by enzymatic and chemical probing. The structures, which were also validated by mutagenesis, demonstrate that cspA mRNA undergoes a temperature-dependent structural rearrangement, likely resulting from stabilization in the cold of an otherwise thermodynamically unstable folding intermediate. At low temperature, the "cold-shock" structure is more efficiently translated and somewhat less susceptible to degradation than the 37°C structure. Overall, our data shed light on a molecular mechanism at the basis of the cold-shock response, indicating that cspA mRNA is able to sense temperature downshifts, adopting functionally distinct structures at different temperatures, even without the aid of trans-acting factors. Unlike with other previously studied RNA thermometers, these structural rearrangements do not result from melting of hairpin structures.

The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA

GIULIODORI, Anna Maria;DI PIETRO, Fabio;GUALERZI, Claudio;PON, Cynthia
2010-01-01

Abstract

Cold induction of cspA, the paradigm Escherichia coli cold-shock gene, is mainly subject to posttranscriptional control, partly promoted by cis-acting elements of its transcript, whose secondary structure at 37°C and at cold-shock temperature has been elucidated here by enzymatic and chemical probing. The structures, which were also validated by mutagenesis, demonstrate that cspA mRNA undergoes a temperature-dependent structural rearrangement, likely resulting from stabilization in the cold of an otherwise thermodynamically unstable folding intermediate. At low temperature, the "cold-shock" structure is more efficiently translated and somewhat less susceptible to degradation than the 37°C structure. Overall, our data shed light on a molecular mechanism at the basis of the cold-shock response, indicating that cspA mRNA is able to sense temperature downshifts, adopting functionally distinct structures at different temperatures, even without the aid of trans-acting factors. Unlike with other previously studied RNA thermometers, these structural rearrangements do not result from melting of hairpin structures.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/201429
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact