Prostaglandin F2alpha (PGF2alpha) regulates fibroblast growth factor-2 (FGF-2) and fibroblast growth factor receptor (FGFR) expression in osteoblasts. Here, the role of FGF-2 in PGF2alpha-induced proliferation and the signaling pathway involved, were determined in calvarial osteoblasts (COBs) from Fgf2+/+ and Fgf2-/- mice. The involvement of the exported FGF-2 isoform, was determined using the FGF-2 neutralizing antibody to alter its binding to FGFR1. PGF2alpha increased activity of Ras, and MAP-kinase cascade as well as Bcl-2 and c-Myc levels in Fgf2+/+ but not in Fgf2-/- COBs. Moreover, in Fgf2+/+ COBs, PGF2alpha-enhanced nuclear accumulation and co-localization of Bcl-2/c-Myc. Although up-regulation of multiple proliferative and survival signals were induced by PGF2alpha in Fgf2+/+ COBs, phospho-p53 was unmodified while p53 was increased. Increased phospho-p53 was, instead, found in Fgf2-/- COBs without up-regulation of oncogenic proteins. The lack of p53 activation in wild type osteoblasts could be due in part to the overexpression of MDM2 caused by PGF2alpha via FGF-2. PGF2alpha, also, increased cyclins D and E in Fgf2+/+ COBs and induced an expansion of Fgf2+/+ osteoblasts in G(2)/M phase. These data clearly show that PGF2alpha induces proliferation via endogenous FGF-2 and the exported isoform mediates PGF2alpha effects by acting in autocrine manner. Furthermore, silencing of FGFR1 in Fgf2+/+ COBs blocked PGF2alpha induced increase of phospho-MDM2 and cyclins.
Signaling pathways implicated in PGF2alpha effects on Fgf2+/+ and Fgf2-/- osteoblasts
SABBIETI, Maria Giovanna;AGAS, DIMITRIOS;MARCHETTI, Luigi;SANTONI, Giorgio;AMANTINI, Consuelo;
2010-01-01
Abstract
Prostaglandin F2alpha (PGF2alpha) regulates fibroblast growth factor-2 (FGF-2) and fibroblast growth factor receptor (FGFR) expression in osteoblasts. Here, the role of FGF-2 in PGF2alpha-induced proliferation and the signaling pathway involved, were determined in calvarial osteoblasts (COBs) from Fgf2+/+ and Fgf2-/- mice. The involvement of the exported FGF-2 isoform, was determined using the FGF-2 neutralizing antibody to alter its binding to FGFR1. PGF2alpha increased activity of Ras, and MAP-kinase cascade as well as Bcl-2 and c-Myc levels in Fgf2+/+ but not in Fgf2-/- COBs. Moreover, in Fgf2+/+ COBs, PGF2alpha-enhanced nuclear accumulation and co-localization of Bcl-2/c-Myc. Although up-regulation of multiple proliferative and survival signals were induced by PGF2alpha in Fgf2+/+ COBs, phospho-p53 was unmodified while p53 was increased. Increased phospho-p53 was, instead, found in Fgf2-/- COBs without up-regulation of oncogenic proteins. The lack of p53 activation in wild type osteoblasts could be due in part to the overexpression of MDM2 caused by PGF2alpha via FGF-2. PGF2alpha, also, increased cyclins D and E in Fgf2+/+ COBs and induced an expansion of Fgf2+/+ osteoblasts in G(2)/M phase. These data clearly show that PGF2alpha induces proliferation via endogenous FGF-2 and the exported isoform mediates PGF2alpha effects by acting in autocrine manner. Furthermore, silencing of FGFR1 in Fgf2+/+ COBs blocked PGF2alpha induced increase of phospho-MDM2 and cyclins.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.