We investigate the possibility of realizing effective quantum gates between two atoms in distant cavities coupled by an optical fiber. We show that highly reliable swap and entangling gates are achievable. We exactly study the stability of these gates in the presence of imperfections in coupling strengths and interaction times and prove them to be robust. Moreover, we analyze the effect of spontaneous emission and losses and show that such gates are very promising in view of the high level of coherent control currently achievable in optical cavities.
Distributed quantum conputation via optical fibers
MANCINI, Stefano;
2006-01-01
Abstract
We investigate the possibility of realizing effective quantum gates between two atoms in distant cavities coupled by an optical fiber. We show that highly reliable swap and entangling gates are achievable. We exactly study the stability of these gates in the presence of imperfections in coupling strengths and interaction times and prove them to be robust. Moreover, we analyze the effect of spontaneous emission and losses and show that such gates are very promising in view of the high level of coherent control currently achievable in optical cavities.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.