Deep-sea life requires adaptation to high pressure, an extreme yet common condition given that oceans cover 70% of Earth’s surface and have an average depth of 3800 meters. Survival at such depths requires specific adaptation but, compared with other extreme conditions, high pressure has received little attention. Recently, Photobacterium profundum strain SS9 has been adopted as a model for piezophily. Here we report its genome sequence (6.4 megabase pairs) and transcriptome analysis. The results provide a first glimpse into the molecular basis for life in the largest portion of the biosphere, revealing high metabolic versatility.

Life at depth: Photobacterium profundum genome sequence and expression analysis

CANNATA, Nicola;
2005-01-01

Abstract

Deep-sea life requires adaptation to high pressure, an extreme yet common condition given that oceans cover 70% of Earth’s surface and have an average depth of 3800 meters. Survival at such depths requires specific adaptation but, compared with other extreme conditions, high pressure has received little attention. Recently, Photobacterium profundum strain SS9 has been adopted as a model for piezophily. Here we report its genome sequence (6.4 megabase pairs) and transcriptome analysis. The results provide a first glimpse into the molecular basis for life in the largest portion of the biosphere, revealing high metabolic versatility.
2005
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/201336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact