The initial steps toward a bioinformatics resourceome are clear. First, an overall ontology with the high-level concepts (algorithms, databases, organizations, papers, people, etc.) must be created, with a set of standard attributes and a standard set of relations between these concepts (e.g., people publish papers, papers describe algorithms or databases, organizations house people, etc.). The initial ontology should be compact and built for distributed collaborative extension. Second, a mechanism for people to extend this ontology with subconcepts in order to describe their own resources should be designed. The precise location of a tool within a taxonomy is not critical—the author will place it somewhere based on the location of similar/competing resources or based on a best-informed guess. Others may create links to the resource from other appropriate locations in the taxonomy in order to ensure that competing interpretations of the appropriate conceptual location for the resource are accommodated. Third, the formats for the ontologies and the resource descriptions should be published so enterprising software engineers can create interfaces for surfing, searching, and viewing the resources. The resulting distributed system of resource descriptions would be extensible, robust, and useful to the entire biomedical research community.
Time to organize the bioinformatics resourceome
CANNATA, Nicola;MERELLI, Emanuela;
2005-01-01
Abstract
The initial steps toward a bioinformatics resourceome are clear. First, an overall ontology with the high-level concepts (algorithms, databases, organizations, papers, people, etc.) must be created, with a set of standard attributes and a standard set of relations between these concepts (e.g., people publish papers, papers describe algorithms or databases, organizations house people, etc.). The initial ontology should be compact and built for distributed collaborative extension. Second, a mechanism for people to extend this ontology with subconcepts in order to describe their own resources should be designed. The precise location of a tool within a taxonomy is not critical—the author will place it somewhere based on the location of similar/competing resources or based on a best-informed guess. Others may create links to the resource from other appropriate locations in the taxonomy in order to ensure that competing interpretations of the appropriate conceptual location for the resource are accommodated. Third, the formats for the ontologies and the resource descriptions should be published so enterprising software engineers can create interfaces for surfing, searching, and viewing the resources. The resulting distributed system of resource descriptions would be extensible, robust, and useful to the entire biomedical research community.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.