We present Spatial P systems, a variant of P systems which embodies the concept of space and position inside a membrane. Objects in membranes are associated with positions. Rules specify, in the usual way, the objects which are consumed and the ones which are produced; in addition, they can specify the positions of the produced objects. Objects belong to two different sets: the set of ordinary objects and the set of mutually exclusive objects. Every position inside a membrane can accommodate an arbitrary number of ordinary objects, but at most one mutually exclusive object. We prove that Spatial P systems are universal even if only non-cooperating rules are allowed. We also show how Spatial P systems can be used to model the evolution of populations in presence of geographical separations.
Spatial P Systems
TESEI, Luca
2011-01-01
Abstract
We present Spatial P systems, a variant of P systems which embodies the concept of space and position inside a membrane. Objects in membranes are associated with positions. Rules specify, in the usual way, the objects which are consumed and the ones which are produced; in addition, they can specify the positions of the produced objects. Objects belong to two different sets: the set of ordinary objects and the set of mutually exclusive objects. Every position inside a membrane can accommodate an arbitrary number of ordinary objects, but at most one mutually exclusive object. We prove that Spatial P systems are universal even if only non-cooperating rules are allowed. We also show how Spatial P systems can be used to model the evolution of populations in presence of geographical separations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.