We examined the effect of PGs, particularly PGF2alpha, on basic fibroblast growth factor-2 (FGF-2) messenger RNA (mRNA) and protein in the rat osteoblastic cell line Py1a and in fetal rat calvariae. Py1a cells expressed multiple FGF-2 mRNA transcripts. PGF2alpha dose-dependently increased the 6-kb transcript at 6 h. The selective PGF2alpha agonist, fluprostenol (Flup), was more potent than PGF2alpha. Phorbol myristate acetate (10(-6) M) also increased a 6-kb mRNA at 6 h. By immunofluorescence microscopy, Flup increased perinuclear staining for FGF-2 protein at 6 h and nuclear labeling at 24 h. Immunogold labeling of calvariae revealed that treatment with Flup for 3 h caused a transition of FGF expression from matrix to cells and an increase in cytoplasmic labeling for FGF-2 protein in periosteal cells and in osteoblasts. After treatment with Flup for 24 h, nuclear labeling was marked in periosteal cells and in osteoblasts, and a further increase in cytoplasmic labeling for FGF-2 was noted in osteocytes, periosteal cells, and osteoblasts. We conclude that PGs can increase FGF-2 mRNA and protein in bone cells. Because the effect of Flup was mimicked by phorbol myristate acetate, we hypothesize that PGs' regulation of FGF-2 is mediated by a PGF2alpha-selective receptor acting through protein kinase C. Hence, effects of PGs on bone remodeling may be mediated, in part, by endogenous FGF-2.

Prostaglandins regulate the expression of Fibroblast growth factor-2 in bone

SABBIETI, Maria Giovanna;MARCHETTI, Luigi;
1999-01-01

Abstract

We examined the effect of PGs, particularly PGF2alpha, on basic fibroblast growth factor-2 (FGF-2) messenger RNA (mRNA) and protein in the rat osteoblastic cell line Py1a and in fetal rat calvariae. Py1a cells expressed multiple FGF-2 mRNA transcripts. PGF2alpha dose-dependently increased the 6-kb transcript at 6 h. The selective PGF2alpha agonist, fluprostenol (Flup), was more potent than PGF2alpha. Phorbol myristate acetate (10(-6) M) also increased a 6-kb mRNA at 6 h. By immunofluorescence microscopy, Flup increased perinuclear staining for FGF-2 protein at 6 h and nuclear labeling at 24 h. Immunogold labeling of calvariae revealed that treatment with Flup for 3 h caused a transition of FGF expression from matrix to cells and an increase in cytoplasmic labeling for FGF-2 protein in periosteal cells and in osteoblasts. After treatment with Flup for 24 h, nuclear labeling was marked in periosteal cells and in osteoblasts, and a further increase in cytoplasmic labeling for FGF-2 was noted in osteocytes, periosteal cells, and osteoblasts. We conclude that PGs can increase FGF-2 mRNA and protein in bone cells. Because the effect of Flup was mimicked by phorbol myristate acetate, we hypothesize that PGs' regulation of FGF-2 is mediated by a PGF2alpha-selective receptor acting through protein kinase C. Hence, effects of PGs on bone remodeling may be mediated, in part, by endogenous FGF-2.
1999
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/201298
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? ND
social impact