In this paper we give a proof of the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. This kind of study is motivated by the link (proved in Giambò et al. (2005)) of the multiplicity problem with the famous Seifert conjecture (formulated in Seifert (1948)) about multiple brake orbits for a class of Hamiltonian systems at a fixed energy level.

Existence of orthogonal geodesic chords on Riemannian manifolds with concave boundary and homeomorphic to the N-dimensional disk

GIAMBO', Roberto;GIANNONI, Fabio;
2010-01-01

Abstract

In this paper we give a proof of the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. This kind of study is motivated by the link (proved in Giambò et al. (2005)) of the multiplicity problem with the famous Seifert conjecture (formulated in Seifert (1948)) about multiple brake orbits for a class of Hamiltonian systems at a fixed energy level.
2010
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/200849
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact