The most characteristic event of cold-shock activation in Escherichia coli is believed to be the de novo synthesis of CspA. We demonstrate, however, that the cellular concentration of this protein is > or = 50 microM during early exponential growth at 37 degrees C; therefore, its designation as a major cold-shock protein is a misnomer. The cspA mRNA level decreases rapidly with increasing cell density, becoming virtually undetectable by mid-to-late exponential growth phase while the CspA level declines, although always remaining clearly detectable. A burst of cspA expression followed by a renewed decline ensues upon dilution of stationary phase cultures with fresh medium. The extent of cold-shock induction of cspA varies as a function of the growth phase, being inversely proportional to the pre-existing level of CspA which suggests feedback autorepression by this protein. Both transcriptional and post-transcriptional controls regulate cspA expression under non-stress conditions; transcription of cspA mRNA is under the antagonistic control of DNA-binding proteins Fis and H-NS both in vivo and in vitro, while its decreased half-life with increasing cell density contributes to its rapid disappearance. The cspA mRNA instability is due to its 5' untranslated leader and is counteracted in vivo by the cold-shock DeaD box RNA helicase (CsdA).

Massive presence of the Escherichia coli 'major cold-shock protein' CspA under non-stress conditions

BRANDI, Anna;SPURIO, Roberto;GUALERZI, Claudio;PON, Cynthia
1999-01-01

Abstract

The most characteristic event of cold-shock activation in Escherichia coli is believed to be the de novo synthesis of CspA. We demonstrate, however, that the cellular concentration of this protein is > or = 50 microM during early exponential growth at 37 degrees C; therefore, its designation as a major cold-shock protein is a misnomer. The cspA mRNA level decreases rapidly with increasing cell density, becoming virtually undetectable by mid-to-late exponential growth phase while the CspA level declines, although always remaining clearly detectable. A burst of cspA expression followed by a renewed decline ensues upon dilution of stationary phase cultures with fresh medium. The extent of cold-shock induction of cspA varies as a function of the growth phase, being inversely proportional to the pre-existing level of CspA which suggests feedback autorepression by this protein. Both transcriptional and post-transcriptional controls regulate cspA expression under non-stress conditions; transcription of cspA mRNA is under the antagonistic control of DNA-binding proteins Fis and H-NS both in vivo and in vitro, while its decreased half-life with increasing cell density contributes to its rapid disappearance. The cspA mRNA instability is due to its 5' untranslated leader and is counteracted in vivo by the cold-shock DeaD box RNA helicase (CsdA).
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/116943
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact