We study the behavior of two particles moving in a bistable potential, colliding inelastically with each other and driven by a stochastic heat bath. The system has the tendency to clusterize, placing the particles in the same well at low drivings, and to fill all of the available space at high temperatures. We show that the hopping over the potential barrier occurs following the Arrhenius rate, where the heat bath temperature is replaced by the granular temperature. Moreover, within the clusterized "phase" one encounters two different scenarios: For moderate inelasticity, the jumps from one well to the other involve one particle at a time, whereas for strong inelasticity the two particles hop simultaneously.

Noise activated granular dynamics

MARINI BETTOLO MARCONI, Umberto;
2003-01-01

Abstract

We study the behavior of two particles moving in a bistable potential, colliding inelastically with each other and driven by a stochastic heat bath. The system has the tendency to clusterize, placing the particles in the same well at low drivings, and to fill all of the available space at high temperatures. We show that the hopping over the potential barrier occurs following the Arrhenius rate, where the heat bath temperature is replaced by the granular temperature. Moreover, within the clusterized "phase" one encounters two different scenarios: For moderate inelasticity, the jumps from one well to the other involve one particle at a time, whereas for strong inelasticity the two particles hop simultaneously.
2003
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/116520
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 33
social impact