Lagrangian contact supersymmetries (depending on derivatives of arbitrary order) are treated in a very general setting. The cohomology of the variational bicom- plex on an arbitrary graded manifold and the iterated cohomology of a generic nilpotent contact supersymmetry are computed. In particular, the first variational formula and conservation laws for Lagrangian systems on graded manifolds using contact supersym- metries are obtained.

Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology

GIACHETTA, Giovanni;MANGIAROTTI, Luigi;
2005-01-01

Abstract

Lagrangian contact supersymmetries (depending on derivatives of arbitrary order) are treated in a very general setting. The cohomology of the variational bicom- plex on an arbitrary graded manifold and the iterated cohomology of a generic nilpotent contact supersymmetry are computed. In particular, the first variational formula and conservation laws for Lagrangian systems on graded manifolds using contact supersym- metries are obtained.
2005
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/115473
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact