The scope of the Technical Forum Group (TFG) on Agents in Bioinformatics (BIOAGENTS) was to inspire collaboration between the agent and bioinformatics communities with the aim of creating an opportunity to propose a different (agent-based) approach to the development of computational frameworks both for data analysis in bioinformatics and for system modelling in computational biology. During the day, the participants examined the future of research on agents in bioinformatics primarily through 12 invited talks selected to cover the most relevant topics. From the discussions, it became clear that there are many perspectives to the field, ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages for use by information agents, and to the use of Grid agents, each of which requires further exploration. The interactions between participants encouraged the development of applications that describe a way of creating agent-based simulation models of biological systems, starting from an hypothesis and inferring new knowledge (or relations) by mining and analysing the huge amount of public biological data. In this report we summarize and reflect on the presentations and discussions.
Agents in bioinformatics
MERELLI, Emanuela
2005-01-01
Abstract
The scope of the Technical Forum Group (TFG) on Agents in Bioinformatics (BIOAGENTS) was to inspire collaboration between the agent and bioinformatics communities with the aim of creating an opportunity to propose a different (agent-based) approach to the development of computational frameworks both for data analysis in bioinformatics and for system modelling in computational biology. During the day, the participants examined the future of research on agents in bioinformatics primarily through 12 invited talks selected to cover the most relevant topics. From the discussions, it became clear that there are many perspectives to the field, ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages for use by information agents, and to the use of Grid agents, each of which requires further exploration. The interactions between participants encouraged the development of applications that describe a way of creating agent-based simulation models of biological systems, starting from an hypothesis and inferring new knowledge (or relations) by mining and analysing the huge amount of public biological data. In this report we summarize and reflect on the presentations and discussions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.