On the basis of the Klingler-Levy classification of finitely generated modules over commutative noetherian rings we approach the old problem of classifying finite commutative rings R with the decidable theory of modules. We prove that if R is (finite length) wild, then the theory of all R-modules is undecidable, and verify decidability of this theory for some classes of tame finite commutative rings.
Towards the decidability of the theory of modules over finite commutative rings / PUNINSKI G.; TOFFALORI C.. - In: ANNALS OF PURE AND APPLIED LOGIC. - ISSN 0168-0072. - 159:1-2(2009), pp. 49-70.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Towards the decidability of the theory of modules over finite commutative rings |
Autori: | |
Data di pubblicazione: | 2009 |
Rivista: | |
Citazione: | Towards the decidability of the theory of modules over finite commutative rings / PUNINSKI G.; TOFFALORI C.. - In: ANNALS OF PURE AND APPLIED LOGIC. - ISSN 0168-0072. - 159:1-2(2009), pp. 49-70. |
Abstract: | On the basis of the Klingler-Levy classification of finitely generated modules over commutative noetherian rings we approach the old problem of classifying finite commutative rings R with the decidable theory of modules. We prove that if R is (finite length) wild, then the theory of all R-modules is undecidable, and verify decidability of this theory for some classes of tame finite commutative rings. |
Handle: | http://hdl.handle.net/11581/115121 |
Appare nelle tipologie: | Articolo |