Scrapie is a transmissible spongiform encephalopathy affecting the central nervous system in sheep. The key event in such neurodegeneration is the conversion of the normal prion protein (PrPC) into the pathological isoform (PrPSc). Misfolded prion proteins are normally degraded by the proteasome. This work, analyzing models of scrapie disease, describes the in vivo relationship between the proteasome and prions. We report that the disease is associated with an increase of proteasome functionality, most likely as a means of counteracting the increased levels of oxidative stress. Here, we show that prions coprecipitate with the 20S proteasome and that they colocalize within the same neuron, thus raising the possibility that PrP interacts with the proteasome in both normal and diseased brain, affecting substrate trafficking and proteasome functionality. This interaction, inducing proteasome activation, leads to different neuronal alterations and triggers apoptosis. Furthermore, testing the effects of isolated PrPC on purified 20S proteasomes, we obtain a concentration- and proteasome composition-dependent decrease in the complex activity. (C) 2009 Wiley-Liss, Inc.

Interplay between 20S proteasomes and prion proteins in scrapie disease.

CECARINI, Valentina;CUCCIOLONI, Massimiliano;ANGELETTI, Mauro;ROSSI, Giacomo;FIORETTI, Evandro;ELEUTERI, Anna Maria
2010-01-01

Abstract

Scrapie is a transmissible spongiform encephalopathy affecting the central nervous system in sheep. The key event in such neurodegeneration is the conversion of the normal prion protein (PrPC) into the pathological isoform (PrPSc). Misfolded prion proteins are normally degraded by the proteasome. This work, analyzing models of scrapie disease, describes the in vivo relationship between the proteasome and prions. We report that the disease is associated with an increase of proteasome functionality, most likely as a means of counteracting the increased levels of oxidative stress. Here, we show that prions coprecipitate with the 20S proteasome and that they colocalize within the same neuron, thus raising the possibility that PrP interacts with the proteasome in both normal and diseased brain, affecting substrate trafficking and proteasome functionality. This interaction, inducing proteasome activation, leads to different neuronal alterations and triggers apoptosis. Furthermore, testing the effects of isolated PrPC on purified 20S proteasomes, we obtain a concentration- and proteasome composition-dependent decrease in the complex activity. (C) 2009 Wiley-Liss, Inc.
2010
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/115097
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact