9-(2-Phosphonylmethoxyethyl)adenine (PMEA) is an antiviral drug with activity against herpes viruses, Epstein-Barr virus and retroviruses, including the human immunodeficiency virus. Unfortunately, oral PMEA administration, as required for long-term therapy, is hindered by its low bioavailability. In the present study, the synthesis, oral bioavailability and antiretroviral activity of a new prodrug of PMEA, consisting of two molecules of PMEA bound together by a P-O-P bond (Bis-PMEA), are reported. Pharmacokinetic experiments in mice showed that the oral bioavailabilities of PMEA following oral gavage of Bis-PMEA or PMEA (at a dose equivalent to 28 mg of PMEA/kg) were 50.8 and 13.5%, respectively. These results correlate with the antiviral efficacy of Bis-PMEA administered orally at a dose equivalent to 50 mg/kg of PMEA in C57 BL/6 mice infected with the retroviral complex LP-BM5. Oral treatment with Bis-PMEA proved to be more effective than oral treatment with PMEA given at equimolar doses. Moreover, oral Bis-PMEA was more effective than intraperitoneal PMEA (50 mg/kg) in reducing lymphoadenopathy, hypergammaglobulinaemia and lymph node proviral DNA content, overall in the first weeks post virus inoculation. Bis-PMEA thus appears to be an efficient oral prodrug of PMEA without significant toxicity, at least in this mouse model.

Pharmacokinetic and antiretroviral activity in mice of oral [P1,P2-bis[2-(adenin-9-yl)ethoxymethyl]phosphonate], a prodrug of 9-(2-phosphonylmethoxyethyl)adenine

CAPPELLACCI, Loredana;FRANCHETTI, Palmarisa;GRIFANTINI, Mario;
2002-01-01

Abstract

9-(2-Phosphonylmethoxyethyl)adenine (PMEA) is an antiviral drug with activity against herpes viruses, Epstein-Barr virus and retroviruses, including the human immunodeficiency virus. Unfortunately, oral PMEA administration, as required for long-term therapy, is hindered by its low bioavailability. In the present study, the synthesis, oral bioavailability and antiretroviral activity of a new prodrug of PMEA, consisting of two molecules of PMEA bound together by a P-O-P bond (Bis-PMEA), are reported. Pharmacokinetic experiments in mice showed that the oral bioavailabilities of PMEA following oral gavage of Bis-PMEA or PMEA (at a dose equivalent to 28 mg of PMEA/kg) were 50.8 and 13.5%, respectively. These results correlate with the antiviral efficacy of Bis-PMEA administered orally at a dose equivalent to 50 mg/kg of PMEA in C57 BL/6 mice infected with the retroviral complex LP-BM5. Oral treatment with Bis-PMEA proved to be more effective than oral treatment with PMEA given at equimolar doses. Moreover, oral Bis-PMEA was more effective than intraperitoneal PMEA (50 mg/kg) in reducing lymphoadenopathy, hypergammaglobulinaemia and lymph node proviral DNA content, overall in the first weeks post virus inoculation. Bis-PMEA thus appears to be an efficient oral prodrug of PMEA without significant toxicity, at least in this mouse model.
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/114963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact