The northern coast of Sicily and its offshore area represent a hinge zone between a sector of the Tyrrhenian Basin, characterized by the strongest crustal thinning, and the sector of the Sicilian belt which has emerged. This hinge zone is part of a wider W-E trending right-lateral shear zone, which has been affecting the Maghrebian Chain units since the Pliocene. Seismological and structural data have been used to evaluate the seismotectonic behavior of the area investigated here. Seismological analysis was performed on a data set of about 2100 seis-mic events which occurred between January 1988 and October 2002 in the Southern Tyrrhenian Sea. This paper focuses in particular on a set of data relating to the period from 6th September 2002, including both the main shock and about 540 aftershocks of the Palermo seismic sequence. The distribution of the hypocenters revealed the presence of two main seismogenic zones. The events of the easternmost zone may be related to the Ionian lithospheric slab diving beneath the Calabrian Arc. The seismicity associated with the westernmost zone is close-ly clustered around a sub-horizontal regression plane contained within the thinned Southern Tyrrhenian crust, hence suggesting that this seismogenic zone is strictly connected to the deformation field active within the hinge zone. On the basis of both structural and seismological data, the brittle deformation pattern is characterized by high-angle faults, mainly represented by transcurrent synthetic right-lateral and antithetic left-lateral systems, producing both restraining/uplifting and releasing/subsiding zones which accommodate strains developing in re-sponse to the current stress field (characterized by a maximum axis trending NW-SE) which has been active in the area since the Pliocene. The cluster of the seismic sequence which started with the 6th September 2002’s main shock is located within the hinge zone. The distribution of the hypocenters relative to this sequence em-phasizes the presence of a high-angle NE-SW-oriented deformation belt within which several shear surfaces are considered to be found sub-parallel to that established for the main shock. The kinematics of all these structures is consistent with a compressive right-lateral focal mechanism.
The Palermo seismic cluster of September 2002, in the seismotectonic framework of the Tyrrhenian Sea-Sicily border area.
TONDI, Emanuele;CELLO, Giuseppe;
2004-01-01
Abstract
The northern coast of Sicily and its offshore area represent a hinge zone between a sector of the Tyrrhenian Basin, characterized by the strongest crustal thinning, and the sector of the Sicilian belt which has emerged. This hinge zone is part of a wider W-E trending right-lateral shear zone, which has been affecting the Maghrebian Chain units since the Pliocene. Seismological and structural data have been used to evaluate the seismotectonic behavior of the area investigated here. Seismological analysis was performed on a data set of about 2100 seis-mic events which occurred between January 1988 and October 2002 in the Southern Tyrrhenian Sea. This paper focuses in particular on a set of data relating to the period from 6th September 2002, including both the main shock and about 540 aftershocks of the Palermo seismic sequence. The distribution of the hypocenters revealed the presence of two main seismogenic zones. The events of the easternmost zone may be related to the Ionian lithospheric slab diving beneath the Calabrian Arc. The seismicity associated with the westernmost zone is close-ly clustered around a sub-horizontal regression plane contained within the thinned Southern Tyrrhenian crust, hence suggesting that this seismogenic zone is strictly connected to the deformation field active within the hinge zone. On the basis of both structural and seismological data, the brittle deformation pattern is characterized by high-angle faults, mainly represented by transcurrent synthetic right-lateral and antithetic left-lateral systems, producing both restraining/uplifting and releasing/subsiding zones which accommodate strains developing in re-sponse to the current stress field (characterized by a maximum axis trending NW-SE) which has been active in the area since the Pliocene. The cluster of the seismic sequence which started with the 6th September 2002’s main shock is located within the hinge zone. The distribution of the hypocenters relative to this sequence em-phasizes the presence of a high-angle NE-SW-oriented deformation belt within which several shear surfaces are considered to be found sub-parallel to that established for the main shock. The kinematics of all these structures is consistent with a compressive right-lateral focal mechanism.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.