Quantization of a Lagrangian field system essentially depends on its degeneracy and implies its BRST extension defined by sets of non-trivial Noether and higher-stage Noether identities. However, one meets a problem how to select trivial and non-trivial higher-stage Noether identities. We show that, under certain conditions, one can associ- ate to a degenerate Lagrangian L the KT-BRST complex of fields, antifields and ghosts whose boundary and coboundary operators provide all non-trivial Noether identities and gauge symmetries of L. In this case, L can be extended to a proper solution of the master equation.

The KT-BRST complex of a degenerate Lagrangian system

GIACHETTA, Giovanni;MANGIAROTTI, Luigi;
2008-01-01

Abstract

Quantization of a Lagrangian field system essentially depends on its degeneracy and implies its BRST extension defined by sets of non-trivial Noether and higher-stage Noether identities. However, one meets a problem how to select trivial and non-trivial higher-stage Noether identities. We show that, under certain conditions, one can associ- ate to a degenerate Lagrangian L the KT-BRST complex of fields, antifields and ghosts whose boundary and coboundary operators provide all non-trivial Noether identities and gauge symmetries of L. In this case, L can be extended to a proper solution of the master equation.
2008
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/114601
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact