The main structural characteristics of the Caggiano and Polla faults, exposed in the epicentral area of the 1561 earthquake (Mw = 6.4), southern Italy, have been investigated in detail to assess their spatial and temporal properties, and to evaluate their seismogenic potential. These right stepping normal faults show an overlap of about 7 km and an across strike separation of about 4 km. The geometric relationships between the Caggiano and Polla faults, but also the displacement distribution along each fault, demonstrate that they have been strongly interacting throughou the Pleistocene. Nevertheless, geological evidence of Holocene tectonic activity was mainly recognized along the Caggiano Fault (faulted late glacial deposits) and in the southernmost part of the Polla Fault (faulted deposits of probably Late Pleistocene age). This suggests that the Caggiano Fault can be considered as the most tectonically active fault in the Vallo di Diano Fault System. By calculating Coulomb stress changes, we have constrained modes of mechanical interactions between the two faults in a scenario compatible with the 1561 earthquake. This approach allows us to argue that both the Caggiano and the Polla Faults are probably linked at depth, and part of the same seismogenic structure which may be potentially responsible for composite ruptures with magnitude ≥ 6.5.
Quaternary fault segmentation and interaction in the epicentral area of the 1561 earthquake (Mw= 6.4), Vallo di Diano, southern Apennines, italy
TONDI, Emanuele;MAZZOLI S.;
2008-01-01
Abstract
The main structural characteristics of the Caggiano and Polla faults, exposed in the epicentral area of the 1561 earthquake (Mw = 6.4), southern Italy, have been investigated in detail to assess their spatial and temporal properties, and to evaluate their seismogenic potential. These right stepping normal faults show an overlap of about 7 km and an across strike separation of about 4 km. The geometric relationships between the Caggiano and Polla faults, but also the displacement distribution along each fault, demonstrate that they have been strongly interacting throughou the Pleistocene. Nevertheless, geological evidence of Holocene tectonic activity was mainly recognized along the Caggiano Fault (faulted late glacial deposits) and in the southernmost part of the Polla Fault (faulted deposits of probably Late Pleistocene age). This suggests that the Caggiano Fault can be considered as the most tectonically active fault in the Vallo di Diano Fault System. By calculating Coulomb stress changes, we have constrained modes of mechanical interactions between the two faults in a scenario compatible with the 1561 earthquake. This approach allows us to argue that both the Caggiano and the Polla Faults are probably linked at depth, and part of the same seismogenic structure which may be potentially responsible for composite ruptures with magnitude ≥ 6.5.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.