Diadenosine disulfide (5) was reported to inhibit NAD kinase from Lysteria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC50 = 110 mu M and IC50 = 87 mu M, respectively) and Mycobacterium tuberculosis NAD kinase (IC50 = 80 mu M and IC50 = 45 mu M, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC50 = 6 mu M) and mycobacterium NAD kinase (IC50 = 14-19 mu M reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation.
Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues
PETRELLI, Riccardo;CAPPELLACCI, Loredana;
2009-01-01
Abstract
Diadenosine disulfide (5) was reported to inhibit NAD kinase from Lysteria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC50 = 110 mu M and IC50 = 87 mu M, respectively) and Mycobacterium tuberculosis NAD kinase (IC50 = 80 mu M and IC50 = 45 mu M, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC50 = 6 mu M) and mycobacterium NAD kinase (IC50 = 14-19 mu M reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.