We provide a general framework to describe cooling of a micromechanical oscillator to its quantum ground state by means of radiation-pressure coupling with a driven optical cavity. We apply it to two experimentally realized schemes, back-action cooling via a detuned cavity and cold-damping quantum-feedback cooling, and we determine the ultimate quantum limits of both schemes for the full parameter range of a stable cavity. While both allow one to reach the oscillator’s quantum ground state, we find that back-action cooling is more efficient in the good cavity limit, i.e., when the cavity bandwidth is smaller than the mechanical frequency, while cold damping is more suitable for the bad cavity limit. The results of previous treatments are recovered as limiting cases of specific parameter regimes.

Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes

GENES, CLAUDIU;VITALI, David;TOMBESI, Paolo;
2008-01-01

Abstract

We provide a general framework to describe cooling of a micromechanical oscillator to its quantum ground state by means of radiation-pressure coupling with a driven optical cavity. We apply it to two experimentally realized schemes, back-action cooling via a detuned cavity and cold-damping quantum-feedback cooling, and we determine the ultimate quantum limits of both schemes for the full parameter range of a stable cavity. While both allow one to reach the oscillator’s quantum ground state, we find that back-action cooling is more efficient in the good cavity limit, i.e., when the cavity bandwidth is smaller than the mechanical frequency, while cold damping is more suitable for the bad cavity limit. The results of previous treatments are recovered as limiting cases of specific parameter regimes.
2008
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/112576
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 501
  • ???jsp.display-item.citation.isi??? 490
social impact