Given two arbitrary functions f, g on the boundary of the unit disk D in R^2, it is shown that there exist a second order uniformly elliptic operator L and a function v in L^p, with L^p second derivatives, 1<p<2, satisfying Lv=0 a.e. in D and with v = f and the normal derivative dv/dn =g on the boundary. A similar extension property was proved by R. Cavazzoni (2003) for any pair of functions f, g that are analytic; our result is obtained under weaker regularity assumptions, e.g. with f'(theta) and g Holder continuous with exponent > 1/2.

On elliptic extensions in the disk

GIANNOTTI, Cristina;
2010-01-01

Abstract

Given two arbitrary functions f, g on the boundary of the unit disk D in R^2, it is shown that there exist a second order uniformly elliptic operator L and a function v in L^p, with L^p second derivatives, 1 1/2.
2010
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/112034
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact