Several major physio-pathological processes, including cancer, inflammatory states and thrombosis, are all strongly dependent upon the fine regulation of proteolytic enzyme activities, and dramatic are the consequences of unbalanced equilibria between enzymes and their cognate inhibitors. In this perspective, the discovery of small-molecule ligands able to modulate catalytic activities has a massive therapeutic potential and is a stimulating goal. Numerous recent experimental evidences revealed that proteolytic enzymes can be opportunely targeted, reporting on small ligands capable of binding to these biological macromolecules with drug-like potencies, and primarily with comparable (or even higher) efficiency with respect to their endogenous binding partner. In particular, natural occurring polyphenols and their derivatives recently disclosed these intriguing abilities, making them promising templates for drug design and development. In this review, we compared the inhibitory capacities of a set of monomeric polyphenols toward serine proteases activity, and finally summarized the data with an emphasis on the derivation of a pharmacophore model.

Natural occurring polyphenols as template for drug design. Focus on serine proteases.

CUCCIOLONI, Massimiliano;MOZZICAFREDDO, MATTEO;BONFILI, LAURA;CECARINI, Valentina;ELEUTERI, Anna Maria;ANGELETTI, Mauro
2009-01-01

Abstract

Several major physio-pathological processes, including cancer, inflammatory states and thrombosis, are all strongly dependent upon the fine regulation of proteolytic enzyme activities, and dramatic are the consequences of unbalanced equilibria between enzymes and their cognate inhibitors. In this perspective, the discovery of small-molecule ligands able to modulate catalytic activities has a massive therapeutic potential and is a stimulating goal. Numerous recent experimental evidences revealed that proteolytic enzymes can be opportunely targeted, reporting on small ligands capable of binding to these biological macromolecules with drug-like potencies, and primarily with comparable (or even higher) efficiency with respect to their endogenous binding partner. In particular, natural occurring polyphenols and their derivatives recently disclosed these intriguing abilities, making them promising templates for drug design and development. In this review, we compared the inhibitory capacities of a set of monomeric polyphenols toward serine proteases activity, and finally summarized the data with an emphasis on the derivation of a pharmacophore model.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/107875
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 45
social impact