In this paper we study the distribution properties of periodic orbits for the linear hyperbolic automorphisms of the $d$-torus. We first obtain an explicit expression of the dynamical zeta function and prove general equidistribution results similar to those obtained for Axiom A flows. We then study in detail some families of periodic orbits living on invariant prime lattices: they have the property that the integral of any character along any single orbit can be reduced to a number theoretic exponential sum over a finite field. This fact enables us to obtain explicit estimates on their asymptotic distributional properties.

Distribution of periodic orbits for linear automorphisms of tori

ISOLA, Stefano
1995-01-01

Abstract

In this paper we study the distribution properties of periodic orbits for the linear hyperbolic automorphisms of the $d$-torus. We first obtain an explicit expression of the dynamical zeta function and prove general equidistribution results similar to those obtained for Axiom A flows. We then study in detail some families of periodic orbits living on invariant prime lattices: they have the property that the integral of any character along any single orbit can be reduced to a number theoretic exponential sum over a finite field. This fact enables us to obtain explicit estimates on their asymptotic distributional properties.
1995
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/104539
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact