We consider a class of maps of [0, 1] with an indifferent fixed point at 0 and expanding everywhere else. Using the invariant ergodic probability measure of a suitable, everywhere expanding, induced transformation we are able to study the infinite invariant measure of the original map in some detail. Given a continuous function with compact support in ]0, 1], we prove that its time averages satisfy a ‘weak law of large numbers’ with anomalous scaling n/ log n and give an upper bound for the decay of correlations.

Infinite invariant measures for non uniformly expanding transformations of [0,1]: weak law of large numbers with anomalous scaling

ISOLA, Stefano
1996-01-01

Abstract

We consider a class of maps of [0, 1] with an indifferent fixed point at 0 and expanding everywhere else. Using the invariant ergodic probability measure of a suitable, everywhere expanding, induced transformation we are able to study the infinite invariant measure of the original map in some detail. Given a continuous function with compact support in ]0, 1], we prove that its time averages satisfy a ‘weak law of large numbers’ with anomalous scaling n/ log n and give an upper bound for the decay of correlations.
1996
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11581/104537
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact