We study a class of maps of the unit interval with a neutral fixed point such as those modeling Pomeau-Manneville type 1 intermittency. We construct the invariant ergodic probability measure corresponding to a suitable (expanding) indice version of the original map and use it to prove the same result obtained by Collet, Galves and Schmitt for a piecewise linear model; i.e. that the distribution of the (suitably rescaled) return time in a vanishingly small neighborhood of the indifferent fixed point converges to a mean one exponential law.

Statistical properties of long return times in type I intermittency

ISOLA, Stefano
1995

Abstract

We study a class of maps of the unit interval with a neutral fixed point such as those modeling Pomeau-Manneville type 1 intermittency. We construct the invariant ergodic probability measure corresponding to a suitable (expanding) indice version of the original map and use it to prove the same result obtained by Collet, Galves and Schmitt for a piecewise linear model; i.e. that the distribution of the (suitably rescaled) return time in a vanishingly small neighborhood of the indifferent fixed point converges to a mean one exponential law.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11581/104536
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact